Check the backend used by keras
from keras import backend
print(backend._BACKEND)
from keras import backend as K
if K.backend()=='tensorflow':
K.set_image_dim_ordering("th")
import time
import matplotlib.pyplot as plt
import numpy as np
% matplotlib inline
np.random.seed(2017)
from keras.models import Sequential
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers import Activation, Flatten, Dense, Dropout
from keras.layers.normalization import BatchNormalization
from keras.utils import np_utils
from keras.datasets import cifar10
(train_features, train_labels), (test_features, test_labels) = cifar10.load_data()
num_train, img_channels, img_rows, img_cols = train_features.shape
num_test, _, _, _ = train_features.shape
num_classes = len(np.unique(train_labels))
Normalize the Input
train_features = train_features.astype('float32')/255
test_features = test_features.astype('float32')/255
train_labels = np_utils.to_categorical(train_labels,num_classes)
test_labels = np_utils.to_categorical(test_labels,num_classes)
model = Sequential()
model.add(Convolution2D(48,(3,3),padding='same',input_shape=(3,32,32)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(num_classes,activation='softmax'))
'''
model.add(Convolution2D(48,(3,3),padding='same',input_shape=(3,32,32)))
model.add(Activation('relu'))
model.add(Convolution2D(48,(3,3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Convolution2D(96,(3,3),padding='same'))
model.add(Activation('relu'))
model.add(Convolution2D(96,(3,3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Convolution2D(192,(3,3),padding='same'))
model.add(Activation('relu'))
model.add(Convolution2D(192,(3,3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes,activation='softmax'))
'''
model.compile(optimizer='adam', loss= 'categorical_crossentropy',metrics=['accuracy'])
start = time.time()
model_info = model.fit(train_features,train_labels,
batch_size = 1024, epochs=10,
validation_data = (test_features,test_labels),verbose=1)
end = time.time()
model.summary()